
	
 	
 0	

	

Creating a Hybrid Agent/Grid Model

of Contact-Induced Force

Uday Uppal

	
 	
 1	

	

Abstract

Most computational fluid dynamics (CFD) models follow either a Lagrangian or Eulerian

approach to study the performance of objects in fluid flow. These wind tunnel models monitor a

multitude of response variables, one of the most important being lift. However, it is difficult to

find models that instead use the collisions between individual air particles and the object of

choice to report such variables. In this model, the individual air particles were represented by

mobile agents, and the object of interest (in this case, a Clark Y wing) was represented by grid

agents, as was the empty environment and the edges of the wind tunnel. The model included

many control features, two of which were the magnitude of initial flow rate and the angle of

attack of the wing. Experimental runs measured the lift force as a function of both of these

control features, and the results indicate that this type of agent/grid based approach to CFD is in

fact viable.

	
 	
 2	

	

1. Introduction and Motivation

The goal of this project was to create an agent/grid based wind tunnel model that could be

used to conduct a computational fluid dynamics (CFD) style study of objects in air flow. Is it

possible to replicate lift using collisions between air particles and a gridded wing rather than

using a traditional Bernoulli continuum approach? This research project is based around building

such a model and testing it in order to answer this question.

The project was originally motivated by the growing interest in unmanned aerial vehicles

(VAUs). Due to their versatility and large number of applications, both military and otherwise,

UAVs are becoming more popular as subjects of research [2]. In its very early stages, this project

was aimed at studying UAV designs and optimizing UAV flight in order to have designs for

cost-efficient UAVs. However, the difficulty in finding a robust free CFD software package to

carry out the project brought about the realization that building such a model from scratch may

be an interesting research project in itself.

CFD packages are sets of numerical methods and algorithms that make it possible to

study the interactions between an object of choice and the fluid that it is travelling through.

Standard approaches to CFD consider the variation of physical quantities (such as density,

position, velocity, and pressure) in a continuum, by either considering a control volume that

moves with the media or one that stays fixed as the media passes through [7]. The former

approach is known as Lagrangian, and the latter is known as Eulerian [7]. Although there

currently exist many CFD software packages that use either of these two approaches to study air

flow patterns around an object of interest, there are very few that use the interactions between

individual or groups of air particles and the object being studied. Models that use such an

approach represent a unique field of modeling known as agent-based modeling.

Computational agent-based models must break, or discretize, the continuum into pieces

that can be individually calculated. These models work off two main components: discrete

mobile agents that have a dynamic position and various individual properties, and fixed grid

agents that have volume and occupy the modeling space. The rules for interactions between these

different types of agents define the parameters of an agent-based model. Such an approach may

be used in upper-level CFD models; however, access to such models seems rare and it was

difficult to locate any that could be used freely. The model in this research project uses a coupled

	
 	
 3	

	

Eulerian/Lagrangian approach in that it studies what happens to air particles (mobile agents) as

they interact with each other and with the object (grid agents), but also records the effect of these

collisions on the object itself. The model studies how this contact between the mobile particles

and the gridded object can help record a measure of lift. This sort of hybrid approach makes the

model quite unique and intriguing.

Agent-based programming is becoming increasingly popular due to its many advantages

in a multitude of situations [3]. Modeling with agents is especially useful when a problem

consists of different objects and a certain environment that these objects exist in [9]. The

different objects can be represented by different types of agents, each with its own personal

attributes, and the types of interactions among the agents and between the agents and the

environment can be used to define the parametric conditions of the model. CFD models are

computationally robust in nature, and the challenge of this research is to determine the viability

of agent-based modeling in CFD. The air particles – or parcels of air particles based on scale –

can be represented by agents, and the object of choice as well as the wind tunnel itself can be

represented by the environment grid. The rules for interactions among the air particles and those

between the particles and the object or the edges of the tunnel would define the model and also

define how any results are output.

NetLogo is one of the most robust and well-known agent based programming

environments [8]. It is freeware, which makes it much more accessible than many other agent

based programming tools. However, it is still sophisticated enough that it can be used to build

powerful and detailed models [8]. Its easy-to-use visual modeling environment makes it work

very well for models that depend on user inputs and modifications, and there are many tools in

its interface that can be used to modify the environment and parameters of the model.

Furthermore, NetLogo syntax is very easy to understand for even inexperienced users, and is

well designed: the grid agents (patches) and the mobile agents (turtles) are linked based on

position and can call on each other’s attributes through simple commands. It is for these reasons

that NetLogo was deemed a strong fit for modeling a wind-tunnel program that could help

answer this project’s research question.

2. Building the Model

2.1 Modeling the Fluid

	
 	
 4	

	

To begin building this model, the first step included designing the basic structure of the

model. It was decided that the air particles would be represented by the agents – turtles in

NetLogo – and that the actual wing would be gridded into the environment – patches in NetLogo

– as would the wind tunnel and its boundaries.

The research mentor’s gas pressure NetLogo model was first studied in detail. This model

contained code for the movement and interactions between individual gas particles and their

surroundings in a manner that conserved energy and momentum. It also contained code for

having controllable fan on one side of the environment that would set the x-component of a

particle’s velocity to the fan value. The model was stripped of its extraneous code, and placed

into a new file and began being used as the official wind tunnel model.

The method that created the particles and set their initial x- and y-velocity components

was edited. Three sliders were implemented: fanlvl, base-pressure, and initial-density. At setup,

the empty gridded patches were populated with a number of particles based on initial-density

value, and this value was maintained throughout each run by adding particles on either side of

the tunnel based on how many were leaving the system at any given moment. This was a better

solution than horizontal wrapping of the model because with wrapping activated, the motion of

the particles exiting was the same as the motion of particles entering, in a way making the model

feed into itself. If you read this sentence, email the chief editors a picture of the Equus

monoclonius. Additionally, particles within the volume of the tunnel were considered to have a

directional velocity component (flow velocity represented by fanlvl slider) and a deviational

velocity component (pressure impact on velocity based on base-pressure slider). Since each

particle was assumed to have the same mass, fanlvl could represent the mean velocity of all the

particles in the environment, and base-pressure could represent the deviation from that mean in

any direction for each individual particle, with the total sum of the deviation being zero in order

to maintain fanlvl as the average velocity. Each particle was given a random angle value between

0 and 360. The initial velocity was represented as a vector sum of the components: the fanlvl was

in the x-direction for each particle and the base-pressure pointed in the direction of the random

angle for each particle (see Figure 1.1 below).

 𝜃	

base-­‐pressure	

fanlvl	

initial	
 velocity	

	
 	
 5	

	

Each particle also had a scaled color from very light tints of blue to dark shades of red

that would represent the speed at which the particle was moving. This value could also be used

as a scale to represent the particle’s temperature since this particle was assumed to be a gas

particle and average kinetic energy was calculated using mass and velocity, with all the masses

assumed to be equal.

The collision kernel was worked on to make sure it conserved both momentum and

energy along the axis of collision. For each step, the collision algorithm counted the number of

particles in each patch, and if there were more than one, the x- and y- velocity components of all

the particles were randomly shuffled among each of the particles in that patch. This made sure

that momentum and energy were conserved along the axis of collision since each particle is

assumed to have the same mass and since the overall velocity components remained the same,

even though the individual motion of the particles was altered.

The collisions of air particles with gridded areas of the wind tunnel were handled in a

different manner. These surface collisions were detected through the presence of

interpenetration. Due to the discrete nature of the model, particles could penetrate into a

restricted patch before collision was detected. In every time step, the position of each particle

was checked to see if the particle was in a restricted patch (top/bottom boundary or wing patch).

If this was the case, the velocity components of the patch were modified and the particle was

redirected based on the surface normal of the patch that it was on (see Figure 1.2 below). The

projection of a particle’s motion vector onto the surface normal of the patch was used in

modifying the x- and y-components of velocity and redirecting the particle as shown below. This

ensured that particles bounced at the correct angle and that the energy of the system was

conserved.

	
 	
 6	

	

Vi	
 Vi	
 -­‐	
 ProjnVi	

-­‐	
 ProjnVi	

Vf	

Figure 1.2: Redirection of agent following interpenetration into wing.

𝑉# = 𝑉% 	
 + (−2 ∗ 𝑃𝑟𝑜𝑗0𝑉%)

Although this algorithm worked in most situations, some restricted patch areas were only

one patch thick, and particles could penetrate into these areas from multiple directions. This

problem was later resolved with a second set of surface normal values that were inserted for each

such patch so that particles on both sides of the patch could bounce off correctly. An axis was

calculated between the two surface normal values, and if a particle approached from below that

axis, it bounced off one normal, and if it approached from above, it bounced off the other, still

using the vector addition shown above.

2.2

The size of the system could be edited using the settings button inside the model, and this

was an easy way to change the ratio between the size of the wing and the volume of the tunnel.

In addition, the initial wing position could be specified using the wing-x-shift and wing-y-shift

input fields. This gave the user more control over the model.

a wing had to be placed into the environment for this model to be tested. The decision

was made to place a Clark Y Wing into the model, since it is a standard wing design but also

includes a curve to add some complexity to the model, making it a viable wing for testing and

building purposes [13] The wing was discretized into small lines that modeled the curve of the

wing, and then small squares were chosen to represent the substance of the wing. Each of these

small squares would be represented by a patch, and each patch would have an attribute that

would give the direction of the surface normal 𝑛 based on the part of the discretizing line that

represents that patch in the wing

	
 	
 7	

	

Close-up of discretized Clark Y wing with normal vectors

Another feature that was added to the model was the angle of attack variable. Airplane

wings are generally angled which allows them to either catch or lose lift, and being able to edit

this angle of attack is an integral component of CFD models. Thus, the angle-of-attack slider was

added to the model representing how much the wing was angled above the horizontal. If the

actual angle of the wing was changed, the model would run into discretization trouble and would

also have to redefine the surface normal values; therefore, it was decided that the most efficient

manner in which to edit the angle of attack was to change the angle at which the flow rate and

the deviational components were directed and added onto the particles when they were first

created. In short the x- and y-axes were redrawn at the angle-of-attack. Additionally, the entire

wind tunnel was modified so that the top and the bottom of the tunnel were placed on the attack

angle variable as well. would ensure that particles bounced correctly off the boundaries of the

tunnel and did not skew any of the lift data by bouncing at the wrong angle.

Output and Display

Measuring the overall force being exerted on the wing by the particles in the system

involved recording values at each collision. It was already known that the particles would only

exert force along the surface of the wing, and the patches on the surface of the wing all had

surface normal values that would report the direction in which the force was being applied. All

collisions conserved momentum and energy, meaning that the change in velocity could be used

to represent the change in force since	
 𝐹 = 𝑚𝑎, where all the masses are equal and the

acceleration is the change in velocity over one time step. Using this information, code was

	
 	
 8	

	

implemented that caused each patch of the wing to record the total amount of force applied by all

particles that came into contact with that patch during each tick of the program. These values

were added to a growing list of collision force values for each patch, and after the size of the list

reached a certain sampling number, the oldest value was deleted so that the maximum size of the

list for each patch remained the same. The value that was used to represent the collision force on

each patch of the wing was the mean of all the values in this list, and this sum of the x- and y-

components of these force values resulted in a measure of the total force applied on the wing as a

result of the collisions from the air particles on the surface of the wing. The lift component of

this force perpendicular to the angle of attack. Since the x- and y-axes were being redefined

based on the angle of attack, lift was simply the component of the overall force along the y-axis.

A similar method was used to calculate and represent the moment of the object in order to

show how the object would rotate due to these different collision forces from the particles. First,

assuming that each patch that was a part of the wing would have the same mass, the x and y

coordinates of each wing patch were averaged to get a center of mass. The magnitude of the

moment was calculated by recording the cross product between the vector from the center of

mass to the patch of choice and the force vector for that patch. Since the resulting vector only

had a z-component, the direction of the moment could be simply represented by a positive or

negative value. The sum of all the moments was put into a list in every time step, and once the

list became greater than the desired sampling length, the oldest value was dropped off. The mean

of this list was recorded as the moment value in the center of wing.

Now that the model was completed algorithmically, various display and output

components had to be created in order to make it meaningful. The model needed to be capable of

reporting and displaying basic information about the system as well as the monitored values.

Reporters were placed near the model environment that reported basic information about

the model such as volume of the tunnel, density in terms of gas particles per grid unit, and also

the overall temperature and pressure. Additionally, the model also had reporters for the

magnitude of the total lift and the x- and y-components of this lift, as well as a reporter for the

moment being calculated. In order to visually display this information in the wind-tunnel itself,

small arrows were placed in the wing patches that allowed the user to see how much force was

being applied to each surface patch and in which direction. Additionally, the sum of these forces

	
 	
 9	

	

resulted in another arrow that was placed at the center of mass of the wing, and this arrow

showed the total force applied on the wing as well as the direction it was applied at. Similarly, an

arrow was created for the moment. It was placed a certain distance horizontally away from the

center of mass of the wing and the moment was divided by the length of this moment arm to

show the moment at that patch of the wing. Additionally, axes were placed in the model that

changed with the angle of attack to give an accurate representation of how the horizontal and

vertical components were oriented. This concluded all the changes made in the model for visual

clarity and important display components and monitors (see Figure 2.3.1 below).

Figure 2.3.1: Close-up of wing with individual patch arrows, moment arrow, and force arrow displayed

Furthermore, the model was cleaned up and organized so that it was easier for the user to

see exactly what was happening in the model and where (see Figures 2.3.2 and 2.3.3 below).

Figure 2.3.2: Model at setup

	
 	
 10	

	

Figure 2.3.3: Model during run

3. Results

Simply building what was thought to be CFD model was not enough however: the

reported values had to be measured and analyzed in order to see if they were even reasonable. To

do this, the behavior space tool of NetLogo was put to use. This tool allows the user to run the

model with various different inputs for a certain number of time-steps and record whatever value

is desired as the dependent variable. For this model, there were two independent variables: the

magnitude of initial flow (represented by the fanlvl variable) and the angle of attack. The

dependent variable that was measured as a result of the independents was the mean lift.

Before running the model to retrieve data, graphs were created in the modeling

environment that tracked density and lift over time-steps. It was seen that no matter what the fan

level and attack angle, the density remained constant but the lift after the sample length varied

around a certain value, rising and falling but maintaining a certain average. In addition, the rise

and fall, or the amplitude, of the lift function decreased over time. This is displayed in Figure

3.1, which was pulled directly from the NetLogo modeling environment.

	
 	
 11	

	

Figure 3.1: Density and Lift vs. Ticks

Due to this fact, a reporter was placed into the model that would measure the mean lift

after the desired sample length had been reached. This is the reporter that was tracked in the

behavior space model. The rest of the behavior space model was then set up, with the constants

being density at 1 particle/patch, base pressure at 3 patches/tick, and the sample length being 100

values. For the independent variables, fan level was varied from 1 to 3 patches/tick with

increments of 0.5 patches/tick, and the angle of attack was varied from 0 to 14 degrees with

increments of 2 degrees. The length of each of these 40 runs was set at 1000 ticks, and each run

was repeated 5 times. The mean of the lift recorded in the five repetitions for each run was then

calculated in order to ensure stability and eliminate transient behavior, and a graph was created

plotting these lift values against the flow rate and angle of attack (See Figures 3.2 and 3.3).	
 	

Figure 3.2: 3D Surface of Collision Induced Lift vs Flow Rate and Angle of Attack for Clark Y Wing

1

2

3

-­‐1
0
1
2
3
4
5
6

0
2

4
6

8
10

12
14

Flow	
 Rate	

(patches/tick)Angle	
 of	
 Attack	
 (˚)

Collision-­‐Induced	
 Lift	
 vs	
 Angle	
 of	
 Attack	
 and	
 Flow	
 Rate

5-­‐6
4-­‐5
3-­‐4
2-­‐3
1-­‐2
0-­‐1
-­‐1-­‐0

Lift	
 Force	

	
 	
 12	

	

Figure 3.3: Contour of Collision Induced Lift vs Flow Rate and Angle of Attack for Clark Y Wing

As can be seen from these graphs, there is a definite trend; lift increases with both angle

of attack and flow rate. This shows that the model does output realistic values for lift based on

the many variables. These values are known to be realistic because the same sort of trend is

noted in traditional CFD packages [6].

Additionally, the error due to discretization of the object is not very large, because even

though the object tested for this data was not a perfect circle, the output values still revolved

around a lift of 0, just as expected.

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

Flow	
 Rate
(patches/tick)

Angle	
 of	
 Attack	
 (˚)

Collision-­‐Induced	
 Lift	
 vs	
 Angle	
 of	
 Attack	
 and	
 Flow	
 Rate

5-­‐6
4-­‐5
3-­‐4
2-­‐3
1-­‐2
0-­‐1
-­‐1-­‐0

Lift	
 Force	

	
 	
 13	

	

Figure 3.4: Surface of Collision-Induced Lift vs Angle of Attack and Flow Rate for Circle

Figure 3.5: Contour of Collision-Induced Lift vs Angle of Attack and Flow Rate for Circle

4. Discussion

1

2

3

-­‐0.6

-­‐0.4

-­‐0.2

0

0.2

0.4

0
2

4
6

8
10

12
14

Flow	
 Rate	

(patches/tick)

Angle	
 of	
 Attack	
 (˚)

Collision-­‐Induced	
 Lift	
 vs	
 Angle	
 of	
 Attack	
 and	
 Flow	
 Rate

0.2-­‐0.4
0-­‐0.2
-­‐0.2-­‐0
-­‐0.4-­‐-­‐0.2
-­‐0.6-­‐-­‐0.4

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

Flow	
 Rate	

(patches/tick)

Angle	
 of	
 Attack	
 (˚)

Collision-­‐Induced	
 Lift	
 vs	
 Angle	
 of	
 Attack	
 and	
 Flow	
 Rate

0.2-­‐0.4

0-­‐0.2

-­‐0.2-­‐0

-­‐0.4-­‐-­‐0.2

-­‐0.6-­‐-­‐0.4

Lift	
 Force	

Lift	
 Force	

	
 	
 14	

	

The results drawn from the model imply that its hybrid agent/grid approach to CFD

performs well in measuring lift. Although the model is unique in that it has both Eulerian and

Lagrangian components and that lift is actually calculated using the collisions between mobile

agent particles and the grid agent wing, the results that are output still agree with standard CFD

models. There is definitely a similar trend relating lift to angle of attack and flow rate as can be

seen in such models, and with the addition of realistic boundary conditions, the agent/grid based

model would perform even better and output more meaningful data.

The fact that such a model could be built: one that is agent-based and depends on the

interaction between agents and their environment to run, and that it also agrees with traditional

CFD models shows that agent based modeling is viable when it comes to CFD. This model is

also very easily accessible since it is built using freeware and can be downloaded and used by

anyone for any sort of project or research. As mentioned earlier, the goal of this project was not

to compete with existing CFD packages. In fact, the reason for building this model was to see

what kind of collision induced lift could be recorded in a hybrid/agent based wind tunnel model

and if these recorded values were realistic or not. This work is just a small start on what could

end up being a very versatile and accurate tool, and there are endless ways in which the model

can be refined and expanded to include more features and that are so far missing.

5. Conclusion and Future Work

The goal of this project was to build an agent/grid based computational fluid dynamics

model that could help model wing designs and then study the effects of air particles on such

wings. The entire project was carried out with this goal in mind, and the end result was a

working model of this kind that displays lift as it should.

The experiments carried out were focused on making sure that the lift values from the

model made theoretical sense and varied correctly with flow rate and angle of attack. In general,

the experimentation attempted to validate the model by analyzing the data it was outputting.

Furthermore, experimentation also attempted to eliminate any possibility that the model seemed

to be working correctly while in reality it was not.

This model is an excellent start because so far, all the output results agree with what is

expected and is accurate. However there are many ways in which this model can be refined and

	
 	
 15	

	

expanded so that it truly becomes more versatile and accurate, with results that are truly

meaningful to the user. One way in which this model can be improved is by adding actual scale

and units to all the values. This would mean a better model that is calibrated to reality by having

values that actually make sense in terms of units rather than just being simple numbers [4]. This

would give the user a chance to compare the results from this model to other models and real life

conditions in general. Units are an important part of any measurement, and this model would be

a lot better with realistic units.

Another way to refine the model is to have a better discretized wing. This would mean

expanding the overall size of the tunnel to allow for a larger and more detailed wing inside. As

the wing gets bigger, it would be easier to discretize and the small errors that occur due to

discretization would be minimized in comparison to the total size of the wing. Basically, this

refinement seeks to put a larger amount of information into the model, and to expand its size.

Also, more agents and a higher density of particles in the model would help replicate

better what actually happens when a wing is slicing through the air. The amount of particles in

our model, although on the order of 10,000, is still very small and there would be a lot more

particles in the same amount of space than there are in the model. Although the equipment is

currently a limit since the computer that the model is being run on slows down quite a bit

whenever one attempts to raise the density too high, expanding the number of particles is still an

important fix to improve the model.

Another possible addition to the model is an editor that allows users to input any sort of

wing into the program. For example, a user could insert x- and y-coordinates for a wing, and the

model could automatically discretize such a wing and add surface normal 𝑛 values on its own,

automatically scaling and inserting the wing into the model. This would truly allow users to test

anything in the model and to see how such objects would perform in air particle flow.

Furthermore, adding friction to the model would make it even more realistic and would also

allow for the calculation of friction drag and other such values, making for an even more robust

CFD tool.

All of these suggested additions and modifications to the model would make it a stronger

program in general, and would allow the user a larger amount of freedom in choosing to measure

	
 	
 16	

	

what they wanted and how. The beauty of this model is that it can be expanded to whatever

degree is required and one can go as far in depth into this model as they want. One can always

refine the code, and add a new feature that makes the model more realistic and also outputs better

and more meaningful results. This model could even be expanded to a 3-dimensional one –

which is an actual feature in NetLogo – to give users a stronger tool for studying how objects

would perform in air flow [8]. This would make for an even more robust model, but still easily

accessible and serviceable by the inexperienced or casual user.

 [1] "Airfoils and Airflow." AV8N. N.p., n.d. Web. 30 Sept. 2014.

<http://www.av8n.com/how/htm/airfoils.html>.

[2] Austin, R., 2010, Unmanned Aircraft Systems : UAVs Design, Development and Deployment:

Aerospace Series: Chichester, Wiley.

[3] Bankes, S. C. (2002). Agent-based modeling: a revolution? Proceedings of the National Academy

of Sciences of the United States of America, 99 Suppl 3, 7199–7200.

doi:10.1073/pnas.072081299

[4] Bushnell, D. M. (2006). SCALING: Wind Tunnel to Flight*. Annual Review of Fluid Mechanics.

doi:10.1146/annurev.fluid.38.050304.092208

[5] Damaceanu, R. C. (2008). An agent-based computational study of wealth distribution in function

of resource growth interval using NetLogo. Applied Mathematics and Computation,

201, 371–377. doi:10.1016/j.amc.2007.12.042

[6] Lissaman, P. B. S. (1983). Low-Reynolds-Number Airfoils. Annual Review of Fluid Mechanics.

doi:10.1146/annurev.fl.15.010183.001255

[7] Lomax, H., Pulliam, T., Zingg, D., & Kowalewski, T. (2002). Fundamentals of Computational

Fluid Dynamics. Applied Mechanics Reviews. doi:10.1115/1.1483340

[8] Lytinen, S. L., & Railsback, S. F. (2010). The evolution of agent-based simulation platforms: a

review of NetLogo 5.0 and ReLogo. In European Meetings on Cybernetics and Systems

Research (pp. 1–11).

[9] Macal, C. M., & North, M. J. (2013). Introductory tutorial: Agent-based modeling and simulation.

In Proceedings of the 2013 Winter Simulation Conference - Simulation: Making

Decisions in a Complex World, WSC 2013 (pp. 362–376).

doi:10.1109/WSC.2013.6721434

	
 	
 17	

	

[10] Moonen, P., Blocken, B., Roels, S., & Carmeliet, J. (2006). Numerical modeling of the flow

conditions in a closed-circuit low-speed wind tunnel. Journal of Wind Engineering and

Industrial Aerodynamics, 94, 699–723. doi:10.1016/j.jweia.2006.02.001

[11] O’Neil, D. A., & Petty, M. D. (2013). Organizational Simulation for Model Based Systems

Engineering. Procedia Computer Science, 16, 323–332. doi:10.1016/j.procs.2013.01.034

[12] Thiele, J., Kurth, W., & Grimm, V. (2011). Agent-and individual-based Modelling with NetLogo:

introduction and New NetLogo Extensions. Die Grüne Reihe, 68–101. doi:ISSN 1860-

4064

[13] "UIUC Airfoil Coordinates Base." UIUC Airfoil Data Site. UIUC Applied Aerodynamics Group,

n.d. Web. 18 Aug. 2014. <http://m-selig.ae.illinois.edu/ads/coord_database.html#C>.

[14] Wolfram, Stephen. A New Kind of Science. Champaign, IL: Wolfram Media, 2002. Print.

