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Abstract 

Most computational fluid dynamics (CFD) models follow either a Lagrangian or Eulerian 

approach to study the performance of objects in fluid flow. These wind tunnel models monitor a 

multitude of response variables, one of the most important being lift. However, it is difficult to 

find models that instead use the collisions between individual air particles and the object of 

choice to report such variables. In this model, the individual air particles were represented by 

mobile agents, and the object of interest (in this case, a Clark Y wing) was represented by grid 

agents, as was the empty environment and the edges of the wind tunnel. The model included 

many control features, two of which were the magnitude of initial flow rate and the angle of 

attack of the wing. Experimental runs measured the lift force as a function of both of these 

control features, and the results indicate that this type of agent/grid based approach to CFD is in 

fact viable. 
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1. Introduction and Motivation 

The goal of this project was to create an agent/grid based wind tunnel model that could be 

used to conduct a computational fluid dynamics (CFD) style study of objects in air flow. Is it 

possible to replicate lift using collisions between air particles and a gridded wing rather than 

using a traditional Bernoulli continuum approach? This research project is based around building 

such a model and testing it in order to answer this question. 

The project was originally motivated by the growing interest in unmanned aerial vehicles 

(VAUs). Due to their versatility and large number of applications, both military and otherwise, 

UAVs are becoming more popular as subjects of research [2]. In its very early stages, this project 

was aimed at studying UAV designs and optimizing UAV flight in order to have designs for 

cost-efficient UAVs. However, the difficulty in finding a robust free CFD software package to 

carry out the project brought about the realization that building such a model from scratch may 

be an interesting research project in itself.  

CFD packages are sets of numerical methods and algorithms that make it possible to 

study the interactions between an object of choice and the fluid that it is travelling through. 

Standard approaches to CFD consider the variation of physical quantities (such as density, 

position, velocity, and pressure) in a continuum, by either considering a control volume that 

moves with the media or one that stays fixed as the media passes through [7]. The former 

approach is known as Lagrangian, and the latter is known as Eulerian [7]. Although there 

currently exist many CFD software packages that use either of these two approaches to study air 

flow patterns around an object of interest, there are very few that use the interactions between 

individual or groups of air particles and the object being studied. Models that use such an 

approach represent a unique field of modeling known as agent-based modeling. 

Computational agent-based models must break, or discretize, the continuum into pieces 

that can be individually calculated. These models work off two main components: discrete 

mobile agents that have a dynamic position and various individual properties, and fixed grid 

agents that have volume and occupy the modeling space. The rules for interactions between these 

different types of agents define the parameters of an agent-based model. Such an approach may 

be used in upper-level CFD models; however, access to such models seems rare and it was 

difficult to locate any that could be used freely. The model in this research project uses a coupled 
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Eulerian/Lagrangian approach in that it studies what happens to air particles (mobile agents) as 

they interact with each other and with the object (grid agents), but also records the effect of these 

collisions on the object itself. The model studies how this contact between the mobile particles 

and the gridded object can help record a measure of lift. This sort of hybrid approach makes the 

model quite unique and intriguing. 

Agent-based programming is becoming increasingly popular due to its many advantages 

in a multitude of situations [3]. Modeling with agents is especially useful when a problem 

consists of different objects and a certain environment that these objects exist in [9]. The 

different objects can be represented by different types of agents, each with its own personal 

attributes, and the types of interactions among the agents and between the agents and the 

environment can be used to define the parametric conditions of the model. CFD models are 

computationally robust in nature, and the challenge of this research is to determine the viability 

of agent-based modeling in CFD. The air particles – or parcels of air particles based on scale – 

can be represented by agents, and the object of choice as well as the wind tunnel itself can be 

represented by the environment grid. The rules for interactions among the air particles and those 

between the particles and the object or the edges of the tunnel would define the model and also 

define how any results are output. 

NetLogo is one of the most robust and well-known agent based programming 

environments [8]. It is freeware, which makes it much more accessible than many other agent 

based programming tools. However, it is still sophisticated enough that it can be used to build 

powerful and detailed models [8]. Its easy-to-use visual modeling environment makes it work 

very well for models that depend on user inputs and modifications, and there are many tools in 

its interface that can be used to modify the environment and parameters of the model. 

Furthermore, NetLogo syntax is very easy to understand for even inexperienced users, and is 

well designed: the grid agents (patches) and the mobile agents (turtles) are linked based on 

position and can call on each other’s attributes through simple commands. It is for these reasons 

that NetLogo was deemed a strong fit for modeling a wind-tunnel program that could help 

answer this project’s research question. 

2. Building the Model 

2.1 Modeling the Fluid 
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To begin building this model, the first step included designing the basic structure of the 

model. It was decided that the air particles would be represented by the agents – turtles in 

NetLogo – and that the actual wing would be gridded into the environment – patches in NetLogo 

– as would the wind tunnel and its boundaries.  

The research mentor’s gas pressure NetLogo model was first studied in detail. This model 

contained code for the movement and interactions between individual gas particles and their 

surroundings in a manner that conserved energy and momentum. It also contained code for 

having controllable fan on one side of the environment that would set the x-component of a 

particle’s velocity to the fan value. The model was stripped of its extraneous code, and placed 

into a new file and began being used as the official wind tunnel model. 

The method that created the particles and set their initial x- and y-velocity components 

was edited. Three sliders were implemented: fanlvl, base-pressure, and initial-density. At setup, 

the empty gridded patches were populated with a number of particles based on initial-density 

value, and this value was maintained throughout each run by adding particles on either side of 

the tunnel based on how many were leaving the system at any given moment. This was a better 

solution than horizontal wrapping of the model because with wrapping activated, the motion of 

the particles exiting was the same as the motion of particles entering, in a way making the model 

feed into itself. If you read this sentence, email the chief editors a picture of the Equus 

monoclonius. Additionally, particles within the volume of the tunnel were considered to have a 

directional velocity component (flow velocity represented by fanlvl slider) and a deviational 

velocity component (pressure impact on velocity based on base-pressure slider). Since each 

particle was assumed to have the same mass, fanlvl could represent the mean velocity of all the 

particles in the environment, and base-pressure could represent the deviation from that mean in 

any direction for each individual particle, with the total sum of the deviation being zero in order 

to maintain fanlvl as the average velocity. Each particle was given a random angle value between 

0 and 360. The initial velocity was represented as a vector sum of the components: the fanlvl was 

in the x-direction for each particle and the base-pressure pointed in the direction of the random 

angle for each particle (see Figure 1.1 below). 
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Each particle also had a scaled color from very light tints of blue to dark shades of red 

that would represent the speed at which the particle was moving. This value could also be used 

as a scale to represent the particle’s temperature since this particle was assumed to be a gas 

particle and average kinetic energy was calculated using mass and velocity, with all the masses 

assumed to be equal.  

The collision kernel was worked on to make sure it conserved both momentum and 

energy along the axis of collision. For each step, the collision algorithm counted the number of 

particles in each patch, and if there were more than one, the x- and y- velocity components of all 

the particles were randomly shuffled among each of the particles in that patch. This made sure 

that momentum and energy were conserved along the axis of collision since each particle is 

assumed to have the same mass and since the overall velocity components remained the same, 

even though the individual motion of the particles was altered.  

The collisions of air particles with gridded areas of the wind tunnel were handled in a 

different manner. These surface collisions were detected through the presence of 

interpenetration. Due to the discrete nature of the model, particles could penetrate into a 

restricted patch before collision was detected. In every time step, the position of each particle 

was checked to see if the particle was in a restricted patch (top/bottom boundary or wing patch). 

If this was the case, the velocity components of the patch were modified and the particle was 

redirected based on the surface normal of the patch that it was on (see Figure 1.2 below). The 

projection of a particle’s motion vector onto the surface normal of the patch was used in 

modifying the x- and y-components of velocity and redirecting the particle as shown below. This 

ensured that particles bounced at the correct angle and that the energy of the system was 

conserved.  
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Figure 1.2: Redirection of agent following interpenetration into wing.  

𝑉# = 𝑉% 	
  + (−2 ∗ 𝑃𝑟𝑜𝑗0𝑉%) 

Although this algorithm worked in most situations, some restricted patch areas were only 

one patch thick, and particles could penetrate into these areas from multiple directions. This 

problem was later resolved with a second set of surface normal values that were inserted for each 

such patch so that particles on both sides of the patch could bounce off correctly. An axis was 

calculated between the two surface normal values, and if a particle approached from below that 

axis, it bounced off one normal, and if it approached from above, it bounced off the other, still 

using the vector addition shown above. 

2.2 

The size of the system could be edited using the settings button inside the model, and this 

was an easy way to change the ratio between the size of the wing and the volume of the tunnel. 

In addition, the initial wing position could be specified using the wing-x-shift and wing-y-shift 

input fields. This gave the user more control over the model.  

a wing had to be placed into the environment for this model to be tested. The decision 

was made to place a Clark Y Wing into the model, since it is a standard wing design but also 

includes a curve to add some complexity to the model, making it a viable wing for testing and 

building purposes [13] The wing was discretized into small lines that modeled the curve of the 

wing, and then small squares were chosen to represent the substance of the wing. Each of these 

small squares would be represented by a patch, and each patch would have an attribute that 

would give the direction of the surface normal 𝑛 based on the part of the discretizing line that 

represents that patch in the wing 



	
   	
   7	
  
	
  

 

Close-up of discretized Clark Y wing with normal vectors 

Another feature that was added to the model was the angle of attack variable. Airplane 

wings are generally angled which allows them to either catch or lose lift, and being able to edit 

this angle of attack is an integral component of CFD models. Thus, the angle-of-attack slider was 

added to the model representing how much the wing was angled above the horizontal. If the 

actual angle of the wing was changed, the model would run into discretization trouble and would 

also have to redefine the surface normal values; therefore, it was decided that the most efficient 

manner in which to edit the angle of attack was to change the angle at which the flow rate and 

the deviational components were directed and added onto the particles when they were first 

created. In short the x- and y-axes were redrawn at the angle-of-attack. Additionally, the entire 

wind tunnel was modified so that the top and the bottom of the tunnel were placed on the attack 

angle variable as well. would ensure that particles bounced correctly off the boundaries of the 

tunnel and did not skew any of the lift data by bouncing at the wrong angle. 

 

 

Output and Display 

Measuring the overall force being exerted on the wing by the particles in the system 

involved recording values at each collision. It was already known that the particles would only 

exert force along the surface of the wing, and the patches on the surface of the wing all had 

surface normal values that would report the direction in which the force was being applied. All 

collisions conserved momentum and energy, meaning that the change in velocity could be used 

to represent the change in force since	
  𝐹 = 𝑚𝑎, where all the masses are equal and the 

acceleration is the change in velocity over one time step. Using this information, code was 
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implemented that caused each patch of the wing to record the total amount of force applied by all 

particles that came into contact with that patch during each tick of the program. These values 

were added to a growing list of collision force values for each patch, and after the size of the list 

reached a certain sampling number, the oldest value was deleted so that the maximum size of the 

list for each patch remained the same. The value that was used to represent the collision force on 

each patch of the wing was the mean of all the values in this list, and this sum of the x- and y-

components of these force values resulted in a measure of the total force applied on the wing as a 

result of the collisions from the air particles on the surface of the wing. The lift component of 

this force perpendicular to the angle of attack. Since the x- and y-axes were being redefined 

based on the angle of attack, lift was simply the component of the overall force along the y-axis. 

A similar method was used to calculate and represent the moment of the object in order to 

show how the object would rotate due to these different collision forces from the particles. First, 

assuming that each patch that was a part of the wing would have the same mass, the x and y 

coordinates of each wing patch were averaged to get a center of mass. The magnitude of the 

moment was calculated by recording the cross product between the vector from the center of 

mass to the patch of choice and the force vector for that patch. Since the resulting vector only 

had a z-component, the direction of the moment could be simply represented by a positive or 

negative value. The sum of all the moments was put into a list in every time step, and once the 

list became greater than the desired sampling length, the oldest value was dropped off. The mean 

of this list was recorded as the moment value in the center of wing.  

Now that the model was completed algorithmically, various display and output 

components had to be created in order to make it meaningful. The model needed to be capable of 

reporting and displaying basic information about the system as well as the monitored values. 

Reporters were placed near the model environment that reported basic information about 

the model such as volume of the tunnel, density in terms of gas particles per grid unit, and also 

the overall temperature and pressure. Additionally, the model also had reporters for the 

magnitude of the total lift and the x- and y-components of this lift, as well as a reporter for the 

moment being calculated. In order to visually display this information in the wind-tunnel itself, 

small arrows were placed in the wing patches that allowed the user to see how much force was 

being applied to each surface patch and in which direction. Additionally, the sum of these forces 
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resulted in another arrow that was placed at the center of mass of the wing, and this arrow 

showed the total force applied on the wing as well as the direction it was applied at. Similarly, an 

arrow was created for the moment. It was placed a certain distance horizontally away from the 

center of mass of the wing and the moment was divided by the length of this moment arm to 

show the moment at that patch of the wing. Additionally, axes were placed in the model that 

changed with the angle of attack to give an accurate representation of how the horizontal and 

vertical components were oriented. This concluded all the changes made in the model for visual 

clarity and important display components and monitors (see Figure 2.3.1 below).  

 

Figure 2.3.1: Close-up of wing with individual patch arrows, moment arrow, and force arrow displayed 

Furthermore, the model was cleaned up and organized so that it was easier for the user to 

see exactly what was happening in the model and where (see Figures 2.3.2 and 2.3.3 below). 

 

Figure 2.3.2: Model at setup 
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Figure 2.3.3: Model during run 

3. Results 

Simply building what was thought to be CFD model was not enough however: the 

reported values had to be measured and analyzed in order to see if they were even reasonable. To 

do this, the behavior space tool of NetLogo was put to use. This tool allows the user to run the 

model with various different inputs for a certain number of time-steps and record whatever value 

is desired as the dependent variable. For this model, there were two independent variables: the 

magnitude of initial flow (represented by the fanlvl variable) and the angle of attack. The 

dependent variable that was measured as a result of the independents was the mean lift. 

Before running the model to retrieve data, graphs were created in the modeling 

environment that tracked density and lift over time-steps. It was seen that no matter what the fan 

level and attack angle, the density remained constant but the lift after the sample length varied 

around a certain value, rising and falling but maintaining a certain average. In addition, the rise 

and fall, or the amplitude, of the lift function decreased over time. This is displayed in Figure 

3.1, which was pulled directly from the NetLogo modeling environment.  



	
   	
   11	
  
	
  

 

Figure 3.1: Density and Lift vs. Ticks 

Due to this fact, a reporter was placed into the model that would measure the mean lift 

after the desired sample length had been reached. This is the reporter that was tracked in the 

behavior space model. The rest of the behavior space model was then set up, with the constants 

being density at 1 particle/patch, base pressure at 3 patches/tick, and the sample length being 100 

values. For the independent variables, fan level was varied from 1 to 3 patches/tick with 

increments of 0.5 patches/tick, and the angle of attack was varied from 0 to 14 degrees with 

increments of 2 degrees. The length of each of these 40 runs was set at 1000 ticks, and each run 

was repeated 5 times. The mean of the lift recorded in the five repetitions for each run was then 

calculated in order to ensure stability and eliminate transient behavior, and a graph was created 

plotting these lift values against the flow rate and angle of attack (See Figures 3.2 and 3.3).	
  	
  

 
Figure 3.2: 3D Surface of Collision Induced Lift vs Flow Rate and Angle of Attack for Clark Y Wing 

1

2

3

-­‐1
0
1
2
3
4
5
6

0
2

4
6

8
10

12
14

Flow	
  Rate	
  
(patches/tick)Angle	
  of	
  Attack	
  (˚)

Collision-­‐Induced	
  Lift	
  vs	
  Angle	
  of	
  Attack	
  and	
  Flow	
  Rate

5-­‐6
4-­‐5
3-­‐4
2-­‐3
1-­‐2
0-­‐1
-­‐1-­‐0

Lift	
  Force	
  



	
   	
   12	
  
	
  

 

Figure 3.3: Contour of Collision Induced Lift vs Flow Rate and Angle of Attack for Clark Y Wing 

As can be seen from these graphs, there is a definite trend; lift increases with both angle 

of attack and flow rate. This shows that the model does output realistic values for lift based on 

the many variables. These values are known to be realistic because the same sort of trend is 

noted in traditional CFD packages [6]. 

Additionally, the error due to discretization of the object is not very large, because even 

though the object tested for this data was not a perfect circle, the output values still revolved 

around a lift of 0, just as expected. 
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Figure 3.4: Surface of Collision-Induced Lift vs Angle of Attack and Flow Rate for Circle 

 

Figure 3.5: Contour of Collision-Induced Lift vs Angle of Attack and Flow Rate for Circle 

4. Discussion 
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The results drawn from the model imply that its hybrid agent/grid approach to CFD 

performs well in measuring lift. Although the model is unique in that it has both Eulerian and 

Lagrangian components and that lift is actually calculated using the collisions between mobile 

agent particles and the grid agent wing, the results that are output still agree with standard CFD 

models. There is definitely a similar trend relating lift to angle of attack and flow rate as can be 

seen in such models, and with the addition of realistic boundary conditions, the agent/grid based 

model would perform even better and output more meaningful data. 

The fact that such a model could be built: one that is agent-based and depends on the 

interaction between agents and their environment to run, and that it also agrees with traditional 

CFD models shows that agent based modeling is viable when it comes to CFD. This model is 

also very easily accessible since it is built using freeware and can be downloaded and used by 

anyone for any sort of project or research. As mentioned earlier, the goal of this project was not 

to compete with existing CFD packages. In fact, the reason for building this model was to see 

what kind of collision induced lift could be recorded in a hybrid/agent based wind tunnel model 

and if these recorded values were realistic or not. This work is just a small start on what could 

end up being a very versatile and accurate tool, and there are endless ways in which the model 

can be refined and expanded to include more features and that are so far missing.  

5. Conclusion and Future Work 

The goal of this project was to build an agent/grid based computational fluid dynamics 

model that could help model wing designs and then study the effects of air particles on such 

wings. The entire project was carried out with this goal in mind, and the end result was a 

working model of this kind that displays lift as it should.  

The experiments carried out were focused on making sure that the lift values from the 

model made theoretical sense and varied correctly with flow rate and angle of attack. In general, 

the experimentation attempted to validate the model by analyzing the data it was outputting. 

Furthermore, experimentation also attempted to eliminate any possibility that the model seemed 

to be working correctly while in reality it was not. 

This model is an excellent start because so far, all the output results agree with what is 

expected and is accurate. However there are many ways in which this model can be refined and 



	
   	
   15	
  
	
  

expanded so that it truly becomes more versatile and accurate, with results that are truly 

meaningful to the user. One way in which this model can be improved is by adding actual scale 

and units to all the values. This would mean a better model that is calibrated to reality by having 

values that actually make sense in terms of units rather than just being simple numbers [4]. This 

would give the user a chance to compare the results from this model to other models and real life 

conditions in general. Units are an important part of any measurement, and this model would be 

a lot better with realistic units. 

Another way to refine the model is to have a better discretized wing. This would mean 

expanding the overall size of the tunnel to allow for a larger and more detailed wing inside. As 

the wing gets bigger, it would be easier to discretize and the small errors that occur due to 

discretization would be minimized in comparison to the total size of the wing. Basically, this 

refinement seeks to put a larger amount of information into the model, and to expand its size. 

Also, more agents and a higher density of particles in the model would help replicate 

better what actually happens when a wing is slicing through the air. The amount of particles in 

our model, although on the order of 10,000, is still very small and there would be a lot more 

particles in the same amount of space than there are in the model. Although the equipment is 

currently a limit since the computer that the model is being run on slows down quite a bit 

whenever one attempts to raise the density too high, expanding the number of particles is still an 

important fix to improve the model. 

Another possible addition to the model is an editor that allows users to input any sort of 

wing into the program. For example, a user could insert x- and y-coordinates for a wing, and the 

model could automatically discretize such a wing and add surface normal 𝑛 values on its own, 

automatically scaling and inserting the wing into the model. This would truly allow users to test 

anything in the model and to see how such objects would perform in air particle flow. 

Furthermore, adding friction to the model would make it even more realistic and would also 

allow for the calculation of friction drag and other such values, making for an even more robust 

CFD tool. 

All of these suggested additions and modifications to the model would make it a stronger 

program in general, and would allow the user a larger amount of freedom in choosing to measure 
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what they wanted and how. The beauty of this model is that it can be expanded to whatever 

degree is required and one can go as far in depth into this model as they want. One can always 

refine the code, and add a new feature that makes the model more realistic and also outputs better 

and more meaningful results. This model could even be expanded to a 3-dimensional one – 

which is an actual feature in NetLogo – to give users a stronger tool for studying how objects 

would perform in air flow [8]. This would make for an even more robust model, but still easily 

accessible and serviceable by the inexperienced or casual user. 
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